行业标准
Paper Sharing

【Device Papers】Enhanced breakdown voltage in β-Ga₂O₃ Schottky diodes via fast neutron irradiation and electro-thermal annealing

日期:2026-01-16阅读:91

      Researchers from the University of Massachusetts Lowell have published a dissertation titled "Enhanced breakdown voltage in β-Ga2O3 Schottky diodes via fast neutron irradiation and electro-thermal annealing" in Applied Physics Letters.

Abstract

      This study demonstrates a substantial enhancement of breakdown voltage in β-Ga2O3 Schottky barrier diodes through an approach that combines fast neutron irradiation with controlled post-irradiation electro-thermal annealing. Devices irradiated with 1 MeV neutrons at a high fluence of 1 × 1015 n/cm2 initially exhibited substantial degradation, including a drastic reduction in on-current and an increase in on-resistance. Electro-thermal testing, conducted through simultaneous current–voltage measurements while heating the devices up to 250 °C, resulted in significant recovery. After four cycles of electro-thermal testing, the devices demonstrated significant improvements in performance, with a substantial recovery of on-current and a reduction in on-resistance compared to the post-radiation condition, approaching pre-radiation levels. Most recovery occurred during the first two cycles, with diminishing improvements thereafter, indicating that thermally responsive radiation-induced traps were largely mitigated early in the process. Capacitance–voltage measurements revealed a substantial reduction in net carrier concentration, decreasing from 3.2 × 1016 cm−3 pre-radiation to 5.5 × 1015 cm−3 after the first electro-thermal testing cycle, indicating an over 82% reduction. Following the third cycle, the carrier concentration partially recovered to 9.9 × 1015 cm−3, reflecting a carrier removal rate of ∼22 cm−1. The breakdown voltage (Vbr) exhibited a remarkable enhancement, increasing from approximately 300 V to 1.28 kV (a ∼325% improvement) after the first electro-thermal testing, which can be attributed to the reduction in net carrier concentration by compensating radiation-induced traps. Subsequent testing reduced Vbr slightly to 940 V due to partial recovery of carrier concentration, but it remained significantly higher than pre-radiation levels. These findings demonstrate the potential of combining neutron irradiation with electro-thermal annealing to significantly enhance the voltage-blocking capability of β-Ga2O3 power devices, making them strong candidates for high-power applications in radiation-intense environments.

 

DOI:

https://doi.org/10.1063/5.0297242