行业标准
Paper Sharing

【Domestic Papers】Improved Ga₂O₃ Films on Variously Oriented Si Substrates with Al₂O₃ or HfO₂ Buffer Layer Via Atomic Layer Deposition

日期:2024-10-10阅读:297

      Researchers from the Xi'an University of Posts & Telecommunications have published a dissertation titled " Improved Ga2O3 films on variously oriented Si substrates with Al2O3 or HfO2 buffer layer via atomic layer deposition " in Micro and Nanostructures.

Abstract

      Ga2O3 is an ultrawide-band-gap semiconductor with excellent properties and promising applications in the electronic and optoelectronics. For acting as the substrate for heteroepitaxial Ga2O3 films, Si has the advantages of wafer-level size, cheap price and nice compatibility whereas also perform the disadvantage of large thermal mismatch. In this paper, the apparent flower-like defects are exhibited on the macroscopic surfaces of annealed Ga2O3 films deposited on (100), (110) and (111) oriented Si substrates by atomic layer deposition (ALD) method. The reason is ascribed to the different thermal expansion coefficients between Ga2O3 and Si induced compressive and tensile stresses. The Al2O3 or HfO2 buffer layer intercalated between Ga2O3 films and Si substrates via successive ALD process suppress the flower-like defects effectively while the surface roughnesses are low to be 1.290 nm and 2.393 nm, respectively. XRD spectra demonstrate that buffer layer indeed relieves the stress of Ga2O3 films on Si substrates while the amorphous Al2O3 has better influence than the polycrystalline HfO2. The results are helpful to the improvement of growth quality and device property of Ga2O3.

 

DOI:https://doi.org/10.1016/j.micrna.2024.207925